已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(1b+1c)+b(1c+1a)+c(1a+1b)=-3;②求a+b+c的值.
问题描述:
已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(
+1 b
)+b(1 c
+1 c
)+c(1 a
+1 a
)=-3;②求a+b+c的值. 1 b
答
将①式变形如下,
a(
+1 b
)+1+b(1 c
+1 c
)+1+c(1 a
+1 a
)+1=0,1 b
即a(
+1 a
+1 b
)+b(1 c
+1 a
+1 b
)+c(1 c
+1 a
+1 b
)=0,1 c
∴(a+b+c)(
+1 a
+1 b
)=0,1 c
∴(a+b+c)•
=0,bc+ac+ab abc
∴a+b+c=0或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值为0,1,-1.
答案解析:先对①式进行变形,主要是给等式左边每一大项一个1,再整理成两式积等于0的形式,讨论们每个式子等于0的情况,最后求出a+b+c的所有值.
考试点:["分式的化简求值"]
知识点:将3拆成1+1+1,最终都是将①式变形为两个式子之积等于零的形式,再利用两数相乘,积为0,讨论两数的值的情况,并会利用公式(a+b+c)2=a2+b2+c2+2(bc+ac+ab)及开方运算.