有一家超市购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,超市决定提高销售价格经调查发现 若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时每月能卖210件,若每月销售件数y(件)与价格x(元/件)满足关系式y=kx+b.(1)确定k与b的值,并指出x的取值范围.(2)为了使每月获得利润为1920元,问商品应定为每件多少元?(3)为了获得最大的利润,商品应定为每件多少元?快啊,1和2可以不答,把第3题过程写出
问题描述:
有一家超市购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,超市决定提高销售价格
经调查发现 若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时每月能卖210件,若每月销售件数y(件)与价格x(元/件)满足关系式y=kx+b.(1)确定k与b的值,并指出x的取值范围.
(2)为了使每月获得利润为1920元,问商品应定为每件多少元?(3)为了获得最大的利润,商品应定为每件多少元?快啊,1和2可以不答,把第3题过程写出
答
(1)设y=kx+b,则
∵当x=20时,y=360;x=25时,y=210.
∴ , 解得
∴y=-30x+960(16≤x≤32)
(3)设每月所得总利润为w元,
则 w=(x-16)y=(x-16)(-30x+960)
=-30(x-24)^2+ 1920.
∵-30 即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.
答
(1)因为 每月销售件数y(件)与价格x(元/件)满足:y=kx+b,则360 = 20k + b210 = 25k + b解得,k = -30,b = 960y = -30x + 960由 y≥0,知 0≤ x ≤ 320(2)收益 R = xy = -30x^2 + 960x,成本 C = 16y = -480x + 15...