已知点A(―1,0),B(1,0)及抛物线y^2=2x ,若抛物线上点P满足向量|PA|=m|PB|,则m的最大值为64-4(1-m^2)(4-4m^2)≥0(m^2-3)(m^2+1)≤0这两步之间不太明白..设P点(y^2/2,y)|PA|^2=(y^2/2+1)^2+y^2|PB|^2=(y^2/2-1)^2+y^2|PA|^2=m^2|PB|^2 (m≥0)(y^2/2+1)^2+y^2=m^2(y^2/2-1)^2+m^2y^2(1-m^2)y^4+8y^2+4-4m^2=0设y^2=p≥0(1-m^2)p^2+8p+4-4m^2=0则△≥064-4(1-m^2)(4-4m^2)≥0(m^2-3)(m^2+1)≤0m∈[-√3,√3]由p≥0p1+p2≥0,p1*p2≥0得8/(m^2-1)≥0m∈(-∞,-1]∪[1,+∞)4m^2/(m^2-1)≥0m∈(-∞,-1]∪[1,+∞)交集为m∈[-√3,-1]∪[1,√3]最大值为√3

问题描述:

已知点A(―1,0),B(1,0)及抛物线y^2=2x ,若抛物线上点P满足向量|PA|=m|PB|,则m的最大值为
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
这两步之间不太明白..
设P点(y^2/2,y)
|PA|^2=(y^2/2+1)^2+y^2
|PB|^2=(y^2/2-1)^2+y^2
|PA|^2=m^2|PB|^2 (m≥0)
(y^2/2+1)^2+y^2=m^2(y^2/2-1)^2+m^2y^2
(1-m^2)y^4+8y^2+4-4m^2=0
设y^2=p≥0
(1-m^2)p^2+8p+4-4m^2=0
则△≥0
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
m∈[-√3,√3]
由p≥0
p1+p2≥0,p1*p2≥0
得8/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
4m^2/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
交集为m∈[-√3,-1]∪[1,√3]
最大值为√3

64-4(1-m^2)(4-4m^2)≥0
64-(4-4m^2)(4-4m^2)≥0
64-(16-32m^2+16m^4)≥0
-16m^4+32m^2+48≥0
m^4-2m^2-3≤0
(m^2-3)(m^2+1)≤0
两个都采纳吧.