一道关于一元函数导数的问题把y看作自变量 ,x 为因变量 ,变换方程求证{(dy/dx) * [(dy)^3/d(x^3)]} - 3 {[(dy)^2/d(x^2)] ^2} = x dy/dx = (dx/dy) ^-1再由 复合函数求导法和反函数求导法做:(dy)^2/d(x^2) = d/dx[(dx/dy)]^-1第一个:这为什么是 复合函数?= (d/dy)* [(d/dx)^(-1)] * (dy/dx)第二个地方:= - [(dx/dy)^(-2)] * [(dx)^2/d(y^2)] *[ (dx/dy) ^(-1)]= - (dx/dy)^(-3) *[(dx)^2/d(y^2)]完全看不懂,many thx!
问题描述:
一道关于一元函数导数的问题
把y看作自变量 ,x 为因变量 ,变换方程求证
{(dy/dx) * [(dy)^3/d(x^3)]} - 3 {[(dy)^2/d(x^2)] ^2} = x
dy/dx = (dx/dy) ^-1
再由 复合函数求导法和反函数求导法做:
(dy)^2/d(x^2) = d/dx[(dx/dy)]^-1
第一个:这为什么是 复合函数?
= (d/dy)* [(d/dx)^(-1)] * (dy/dx)
第二个地方:
= - [(dx/dy)^(-2)] * [(dx)^2/d(y^2)] *[ (dx/dy) ^(-1)]
= - (dx/dy)^(-3) *[(dx)^2/d(y^2)]
完全看不懂,
many thx!
答